8 research outputs found

    Pilot Test of Dosage Effects in HEXORR II for Robotic Hand Movement Therapy in Individuals With Chronic Stroke

    Get PDF
    Impaired use of the hand in functional tasks remains difficult to overcome in many individuals after a stroke. This often leads to compensation strategies using the less-affected limb, which allows for independence in some aspects of daily activities. However, recovery of hand function remains an important therapeutic goal of many individuals, and is often resistant to conventional therapies. In prior work, we developed HEXORR I, a robotic device that allows practice of finger and thumb movements with robotic assistance. In this study, we describe modifications to the device, now called HEXORR II, and a clinical trial in individuals with chronic stroke. Fifteen individuals with a diagnosis of chronic stroke were randomized to 12 or 24 sessions of robotic therapy. The sessions involved playing several video games using thumb and finger movement. The robot applied assistance to extension movement that was adapted based on task performance. Clinical and motion capture evaluations were performed before and after training and again at a 6-month followup. Fourteen individuals completed the protocol. Fugl-Meyer scores improved significantly at the 6 month time point compared to baseline, indicating reductions in upper extremity impairment. Flexor hypertonia (Modified Ashworth Scale) also decreased significantly due to the intervention. Motion capture found increased finger range of motion and extension ability after the intervention that continued to improve during the followup period. However, there was no change in a functional measure (Action Research Arm Test). At the followup, the high dose group had significant gains in hand displacement during a forward reach task. There were no other significant differences between groups. Future work with HEXORR II should focus on integrating it with functional task practice and incorporating grip and squeezing tasks.Trial Registration:ClinicalTrials.gov, NCT04536987. Registered 3 September 2020 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT04536987

    Lessons learned: Symbiotic autonomous robot ecosystem for nuclear environments

    Get PDF
    Nuclear facilities have a regulatory requirement to measure radiation levels within Post Operational Cleanout (POCO) around nuclear facilities each year, resulting in a trend towards robotic deployments to gain an improved understanding during nuclear decommissioning phases. The UK Nuclear Decommissioning Authority supports the view that human-in-the-loop robotic deployments are a solution to improve procedures and reduce risks within radiation haracterisation of nuclear sites. We present a novel implementation of a Cyber-Physical System (CPS) deployed in an analogue nuclear environment, comprised of a multi-robot team coordinated by a human-in-the-loop operator through a digital twin interface. The development of the CPS created efficient partnerships across systems including robots, digital systems and human. This was presented as a multi-staged mission within an inspection scenario for the heterogeneous Symbiotic Multi-Robot Fleet (SMuRF). Symbiotic interactions were achieved across the SMuRF where robots utilised automated collaborative governance to work together where a single robot would face challenges in full characterisation of radiation. Key contributions include the demonstration of symbiotic autonomy and query-based learning of an autonomous mission supporting scalable autonomy and autonomy as a service. The coordination of the CPS was a success and displayed further challenges and improvements related to future multi-robot fleets

    Students' participation in collaborative research should be recognised

    No full text
    Letter to the editor

    IASIL Bibliography 2013

    No full text
    corecore